استفاده از الگوریتم بهینه سازی ازدحام ذرات و شبکه های عصبی مصنوعی در پیش بینی خشکسالی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده عمران
- author مریم شفیعی نجد
- adviser یوسف حسن زاده محمد تقی اعلمی
- publication year 1394
abstract
پدیده خشکسالی یکی از بلایای طبیعی می باشد که احتمال وقوع آن در تمام مناطق اقلیمی امکان پذیر است و در هر منطقه ای که روی می دهد، باعث ایجاد آسیب های جدی در محیط زیست و زندگی انسان ها می شود. بنابراین پیش بینی این پدیده مضر، می تواند تاثیر قابل توجهی در کنترل و مدیریت منابع آب داشته باشد و آثار مخرب آن را تا حد امکان کاهش دهد. برای انجام این منظور، ابتدا با استفاده از شاخص بارندگی استاندارد شده چند متغیره (mspi)، مشخصه های خشکسالی در حوضه آبریز لیقوان چای بدست می آید و سپس از شبکه های عصبی مصنوعی (ann) جهت پیش بینی شاخص فوق استفاده می گردد. در ادامه جهت آموزش شبکه های عصبی مصنوعی و تخمین بهینه وزن های آن، الگوریتم بهینه سازی ازدحام ذرات (pso) بکار برده شده و عملکرد آن با الگوریتم پس انتشار خطا (bp) مورد مقایسه و ارزیابی قرار می گیرد. در نهایت نتایج حاصل، برتری مدل ann-pso را نسبت به مدل ann-bp نشان می دهد.
similar resources
تخمین پارامترهای مخزنی با استفاده از داده های چاه پیمایی و بهره گیری از ترکیب شبکه عصبی مصنوعی و الگوریتم بهینه سازی ازدحام ذرات
پارامترهای ژئومکانیکی و پتروفیزیکی مخزن همانند سرعت موج برشی، تخلخل و تراوایی از جمله پارامترهای مهمی هستند که در شبیهسازی مخازن هیدروکربوری و استراتژیهای اکتشافی نقش موثری ایفا می کنند. اخیراً روشهای هوش مصنوعی بهمنظور پیشبینی این پارامترها با استفاده از دادههای چاه پیمایی بهکاربرده شدهاند. بااینحال پیشبینی ویژگیهای مخازن ناهمگن همواره با دشوارهای بسیاری همراه است و بهسختی پاسخ مناس...
full textبررسی دقت شبکه های عصبی مصنوعی و الگوریتم بهینه سازی کلونی مورچگان در پیش بینی مدیریت سود
شناخت کیفیت سود برای استفادهکنندگان از اطلاعات حسابداری به دلیل ارزیابی عملکرد، پیشبینی سودآوری و تعیین ارزش واقعی شرکتها بسیار حائز اهمیت است. هدف از این پژوهش بررسی دقت پیشبینی مدیریت سود با استفاده از شبکههای عصبی (ANN) و الگوریتم کلونی مورچگان (ACO) و مقایسه آن با مدل خطی (LR) است. برای این منظور از 28 متغیر تاثیرگذار بر مدیریت سود در قالب چهار گروه (مالی، مدیریتی، شرکتی و حسابرسی) در...
full textمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
full textپیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA
تبدیل موجک یکی از روشهای نوین و بسیار موثر در زمینه تحلیل سیگنالها و سریهای زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، دادههای حاصل بهعنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیشبینی خشکسالی ارائه میگردد. در این تحقیق، از شبکههای عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایهای شعاعی ((RBF، سری زمانی AR...
full textمدل سازی و پیش بینی کارایی بانک های دولتی و خصوصی ایران با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک
دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده عمران
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023